A research team from NPL and the University of Edinburgh have invented a new way to zip and unzip DNA strands using electrochemistry.
The DNA double helix has been one of the most recognisable structures in science ever since it was first described by Watson and Crick almost 60 years ago (paper published in Nature in 25 April 1953). The binding and unbinding mechanism of DNA strands is vital to natural biological processes and to the polymerase chain reactions used in biotechnology to copy DNA for sequencing and cloning.
The improved understanding of this process, and the discovery of new ways to control it, would accelerate the development of new technologies such as biosensors and DNA microarrays that could make medical diagnostics cheaper, faster and simpler to use.
The most common way of controlling the binding of DNA is by raising and lowering temperature in a process known as heat cycling. While this method is effective, it requires bulky equipment, which is often only suitable for use in laboratories. Medicine is moving towards personalised treatment and diagnostics which require portable devices to quickly carry out testing at the point of care, i.e. in hospitals rather than laboratories. The development of alternative methods to control the DNA binding process, for example with changes in acidity or the use of chemical agents, would be a significant step towards lab-on-a-chip devices that can rapidly detect disease.
However, until now, no method has been shown to enable fast, electrochemical control at constant temperatures without the need for dramatic changes in solution conditions or modifying the nucleotides, the building blocks of DNA.
A research team from NPL and the University of Edinburgh have invented a new way of controlling DNA using electrochemistry. The team used a class of molecules called DNA intercalators which bind differently to DNA, depending on whether they are in a reduced or oxidised state, altering its stability. These molecules are also electroactive, meaning that their chemical state can be controlled with an electric current.
A paper published in the Journal of the American Chemical Society explains how the process works. Electrodes apply a voltage across a sample containing double strands of DNA which are bonded to the electroactive chemicals. This reduces the chemicals (they gain electrons), decreasing the stability of the DNA and unzipping the double helix into single strands. Removing the voltage leads to the oxidisation of the chemicals and the DNA strands zip back up to re-form the familiar double helix structure. Put simply, with the flick of a switch, the oxidation state of the molecules can be changed and the DNA strands are zipped together or pulled apart.
Explore further: Research sheds new light on kinky DNA
DNA falls apart when you pull it with a tiny force: the two strands that constitute a DNA molecule disconnect. Peter Gross of VU University Amsterdam has shown this in his PhD research project. With this research, ...
(Phys.org) -- A breakthrough in DNA research from the University of Reading could be used to devise new therapeutic treatments for cancer.
(Phys.org)—A research team in Italy has succeeded in capturing a high contrast image of a band of DNA fiber – the closest anyone has ever come to taking a photograph of a single strand of DNA. The team ...
The DNA structure as revealed by Watson and Crick is pivotal to the stability and replication of the DNA double helix. Replacement of the DNA base-pairs with other molecular entities is providing new functions ...
(Phys.org) —While the natural world is replete with compounds that form the basis of many disease-fighting pharmaceuticals, it is also the case that humans and other mammals produce their own host-defense ...
(Phys.org) —There's hope for patients with myotonic dystrophy. A new small molecule developed by researchers at the University of Illinois has been shown to break up the protein-RNA clusters that cause ...
(Phys.org) —A combined team of researchers from the U.S. and Slovenia has succeeded in creating "origami" type proteins that assemble themselves into three dimensional shapes. As a proof of concept, the ...
(Phys.org) —Changes in the bases that make up DNA act as markers, telling a cell which genes it should read and which it shouldn't. In the journal Angewandte Chemie, a British team has now introduced a new ...
Move the slider to adjust rank threshold, so that you can hide some of the comments.
Display comments: newest firstnot rated yet Apr 19, 2013 If anything, this could add mechanical controls to dna-nanomanuacturing.
(Phys.org) —While the natural world is replete with compounds that form the basis of many disease-fighting pharmaceuticals, it is also the case that humans and other mammals produce their own host-defense ...
(Phys.org) —There's hope for patients with myotonic dystrophy. A new small molecule developed by researchers at the University of Illinois has been shown to break up the protein-RNA clusters that cause ...
From methanol to formaldehyde - this reaction is the starting point for the synthesis of many everyday plastics. Using catalysts made of gold particles, formaldehyde could be produced without the environmentally ...
Researchers have found that reusing the by-products of fruit and cereal processing could help promote the sustainability of the food industry, as long as its overall environmental fingerprint is clearly evaluated.
(Phys.org) —A combined team of researchers from the U.S. and Slovenia has succeeded in creating "origami" type proteins that assemble themselves into three dimensional shapes. As a proof of concept, the ...
Although eleventh-century Vikings did not have magnetic compasses at their disposal, it is thought that they could determine their orientation at sea using sun-compasses. Sun-compasses use the position of ...
The atoms that make up ordinary matter fall down, so do antimatter atoms fall up? Do they experience gravity the same way as ordinary atoms, or is there such a thing as antigravity?
Pick up your smartphone. How are financial markets faring? Check Dow Jones or the S&P 500. Average temperature in the United State last July 4th? Steer your iPad over to the National Weather Service. OK, ...
A quantum computer is controlled by the laws of quantum physics; it promises to perform complicated calculations, or search large amounts of data, at a speed that exceeds by far those that today's fastest supercomputers are ...
(Phys.org) —As planets age they become darker and cooler. Saturn however is much brighter than expected for a planet of its age - a question that has puzzled scientists since the late sixties. New research ...
© Phys.org™ 2003-2013var _comscore = _comscore || [];var csDocDomain = document.location.href; _comscore.push({ c1: "2", c2: "6035753", c3: "6035753", c4: csDocDomain }); (function() { var s = document.createElement("script"), el = document.getElementsByTagName("script")[0]; s.async = true; s.src = (document.location.protocol == "https:" ? "https://sb" : "http://b") + ".scorecardresearch.com/beacon.js"; el.parentNode.insertBefore(s, el);})();
No comments:
Post a Comment