Pages - Menu

Tuesday, April 30, 2013

Nanosuits help small creatures survive a vacuum

//popupHint('We\'ve improved! Welcome to the redesigned Phys.org. We hope you like it. Please feel free to contact us with any questions or feedback.', '20130');
(A–D) A living Drosophila larva was exposed to high vacuum with electron-beam irradiation for 60 min. (F and G) Before SEM observation, a different larva (light micrograph in F) was placed in the observation chamber without electron-beam irradiation for 60 min. (H and I) The specimen collapsed completely when subsequently observed by SEM. Each small white square in C and H is shown magnified in D and I, respectively. (E and J) TEM images are shown of vertical sections through the surface of each animal. The layer between the arrowheads in E indicates the limits of the newly formed outer membrane, not present in J. An outer layer covering the animal represents ECSs in B and G. Credit: (c) 2013 PNAS, doi: 10.1073/pnas.1221341110

(Phys.org) —Scientists use scanning electron microscopes (SEMs) to study tiny structures in small organisms. SEMs can only work in a high vacuum, and exposure to such a vacuum normally causes living things to die very quickly. Therefore, until now, scientists have been unable to study living specimens using SEMs. Takahiko Hariyama of the Hamamatsu University School of Medicine in Japan and his colleagues report that they were able to create "nanosuits" for small organisms by bombarding these organisms with electron beams or plasma radiation. In their paper, published in the Proceedings of the National Academy of Sciences, Hariyama's team reports that these nanosuits provide protection against a high vacuum, allowing the organisms to stay alive in SEMs while scientists analyze them.

Exposure to a high vacuum causes living things to become dehydrated, collapse and die. This poses a problem for scientists who want to study fine structures on small organisms, because they must use SEMs to view these structures. They can only observe dead creatures, so do not get a true picture of how these structures appear on living ones.

Hariyama and his team tested how long different kinds of organisms would live in an SEM. As expected, almost all of the living things they studied died quickly. However, to their surprise, fruit fly larvae moved around for a full hour while in the SEM.

When the researchers placed fruit fly larvae in a high vacuum SEM observation chamber, but waited an hour before exposing the larvae to electron beams, the larvae all died, indicating that electrons somehow aided the other group's survival.

The researchers found that treatment with electron radiation causes a gooey extracellular substance (ECS), which normally covers fruit fly larvae, to polymerize, forming a 50-100 nanometer thick surface layer. They called this layer, between 1,000 and 2,000 times thinner than a human hair, a "nanosuit." This nanosuit, while flexible enough to allow the larvae to move, acts as a protective barrier against the vacuum, preventing severe dehydration and enabling the larvae to survive.

Hariyama and his team found that they could cause nanosuits to form on fruit fly larvae, as well as on other insects with ECS coatings, by exposing them to ionized plasma particles as well as electrons.

They were able to create protective nanosuits for mosquitoes, which do not have natural coatings, by immersing them in Tween 20, a non-toxic chemical found in detergents, and then exposing them to plasma radiation.

The researchers point out that plasma and energetic electrons, which exist throughout the universe, could help coated organisms form their own protective nanosuits and survive the vacuum of space.

Explore further: Fruit flies medicate their larvae with alcohol

More information: A thin polymer membrane, nano-suit, enhancing survival across the continuum between air and high vacuum, PNAS, Published online before print April 15, 2013. doi: 10.1073/pnas.1221341110

Abstract
Most multicellular organisms can only survive under atmospheric pressure. The reduced pressure of a high vacuum usually leads to rapid dehydration and death. Here we show that a simple surface modification can render multicellular organisms strongly tolerant to high vacuum. Animals that collapsed under high vacuum continued to move following exposure of their natural extracellular surface layer (or that of an artificial coat-like polysorbitan monolaurate) to an electron beam or plasma ionization (i.e., conditions known to enhance polymer formation). Transmission electron microscopic observations revealed the existence of a thin polymerized extra layer on the surface of the animal. The layer acts as a flexible "nano-suit" barrier to the passage of gases and liquids and thus protects the organism. Furthermore, the biocompatible molecule, the component of the nano-suit, was fabricated into a "biomimetic" free-standing membrane. This concept will allow biology-related fields especially to use these membranes for several applications.

© 2013 Phys.org

created8 hours ago Hi guys, I'm having a bit of difficulty understanding Pourboix diagrams. The biggest problem at the moment is that I don't clearly understand what...
created9 hours ago Hi to all, I want to know the temperature after combustion of methane with air. How will i calculate it? Kindly inform me. Regards,...
createdApr 28, 2013 I am familiar with the equation ?G=?G°+RT ln(Q).But I can't derive it.We have to use the equation to derive nernst equation. So please help.
createdApr 28, 2013 Hi, can someone please explain to me how I can identify which is the oxidation half and which is the reduction half of a redox reaction. I have read...
createdApr 27, 2013 I have been urinating into a plastic bottle lately (I will not elaborate why), and have been finding the bottle to hold a vacuum the following...
createdApr 27, 2013 Can someone outline a comprehensive way to figure out and write all the different isomers of square planar and octahedral single-centre coordination...
More from Physics Forums - Chemistry
Mar 19, 2012

(PhysOrg.com) -- Most people know that ticks are rather hardy little creatures, killing them generally takes some severe bashing with a blunt object, or incineration in an open fire. But few likely suspected ...

Feb 22, 2013

(Phys.org)—A new study in the U.S. shows that fruit flies lay their eggs on a food source with a high alcohol content if they see parasitic wasps in the area, instead of a non-alcohol food.

Apr 06, 2012

(Phys.org) -- News of new uses for graphene continue to come in with remarkable regularity, and now a team of physicists, as they describe in their paper published in the journal Science, have figured out a ...

Nov 01, 2012

(Medical Xpress)—Vision may be less important to "seeing" than is the brain's ability to process points of light into complex images, according to a new study of the fruit fly visual system currently published ...

4 hours ago

(Phys.org) —While the natural world is replete with compounds that form the basis of many disease-fighting pharmaceuticals, it is also the case that humans and other mammals produce their own host-defense ...

10 hours ago

(Phys.org) —There's hope for patients with myotonic dystrophy. A new small molecule developed by researchers at the University of Illinois has been shown to break up the protein-RNA clusters that cause ...

Apr 29, 2013

(Phys.org) —A combined team of researchers from the U.S. and Slovenia has succeeded in creating "origami" type proteins that assemble themselves into three dimensional shapes. As a proof of concept, the ...

Apr 25, 2013

(Phys.org) —Changes in the bases that make up DNA act as markers, telling a cell which genes it should read and which it shouldn't. In the journal Angewandte Chemie, a British team has now introduced a new ...

(Phys.org) —While the natural world is replete with compounds that form the basis of many disease-fighting pharmaceuticals, it is also the case that humans and other mammals produce their own host-defense ...

(Phys.org) —There's hope for patients with myotonic dystrophy. A new small molecule developed by researchers at the University of Illinois has been shown to break up the protein-RNA clusters that cause ...

From methanol to formaldehyde - this reaction is the starting point for the synthesis of many everyday plastics. Using catalysts made of gold particles, formaldehyde could be produced without the environmentally ...

Researchers have found that reusing the by-products of fruit and cereal processing could help promote the sustainability of the food industry, as long as its overall environmental fingerprint is clearly evaluated.

(Phys.org) —A combined team of researchers from the U.S. and Slovenia has succeeded in creating "origami" type proteins that assemble themselves into three dimensional shapes. As a proof of concept, the ...

(HealthDay)—Members of the American Academy of Family Physicians (AAFP) and other medical associations are urging further consideration of Section 9003 of the Patient Protection and Affordable Care Act ...

(HealthDay)—A new study failed to find any evidence to back up a suggested association between Lyme disease and autism spectrum disorders.

In Western Australia, the wet season occurs between December and March and the dry season between May and October. The reversals of prevailing winds in the two season drives the shift from wet to dry and ...

Although eleventh-century Vikings did not have magnetic compasses at their disposal, it is thought that they could determine their orientation at sea using sun-compasses. Sun-compasses use the position of ...

The atoms that make up ordinary matter fall down, so do antimatter atoms fall up? Do they experience gravity the same way as ordinary atoms, or is there such a thing as antigravity?

© Phys.org™ 2003-2013

var _comscore = _comscore || [];var csDocDomain = document.location.href; _comscore.push({ c1: "2", c2: "6035753", c3: "6035753", c4: csDocDomain }); (function() { var s = document.createElement("script"), el = document.getElementsByTagName("script")[0]; s.async = true; s.src = (document.location.protocol == "https:" ? "https://sb" : "http://b") + ".scorecardresearch.com/beacon.js"; el.parentNode.insertBefore(s, el);})();

View the original article here

No comments:

Post a Comment