(Phys.org) —Vitamin C is found in many foods, and, among other things, is used to prolong shelf life. However, it is not stable in air or at room temperature. Cut fruits turn brown and the tastes of foods change. In the journal Angewandte Chemie, German researchers have now presented a systematic study of the processes that occur during the degradation of vitamin C.
Vitamin C, ascorbic acid, is a reducing carbohydrate and can react with amino acids, peptides, and proteins. These types of reactions between carbohydrates (sugars) and proteins belong to a class of reactions known as Maillard reactions, which are named after the man who discovered them, Louis Camille Maillard. Maillard reactions are ubiquitous: They make our toast crispy, are responsible for the smell of browning meat, and give roast potatoes their aroma.
However, the Maillard reactions of vitamin C are less pleasant. They are involved in the browning of cut fruit and can cause changes in the flavor of foods. In addition, the Maillard degradation of vitamin C in the body may be involved in clouding the lenses of the eyes and in the age-related loss of elasticity in the skin and sinews.
The process of vitamin C degradation has previously not been truly understood. Marcus A. Glomb and Mareen Smuda at the Martin Luther University of Halle-Wittenberg have now comprehensively studied the amine-catalyzed degradation of vitamin C in a model system. By using vitamin C molecules marked in various places with 13C isotopes, they were able to trace the products of the Maillard reaction back to their original positions in the vitamin C structure. They also carried out experiments under an atmosphere of 18O2 isotopes and quantified all of the primary fragmentation products. This allowed them to clarify about 75 % of the Maillard-induced degradation reactions of vitamin C: the end products are carbonyl and dicarbonyl compounds, carboxylic acids, and amides.
Among other compounds, the researchers identified N6-xylonyl lysine, N6-lyxonyl lysine, and N6-threonyl lysine as unique characteristic end-products of vitamin C Maillard systems. In the future, identification of these compounds will make it possible to differentiate between vitamin C related Maillard reaction products and those stemming from other reducing carbohydrates like glucose.
The insights gained from this model system help to clarify the changes that occur in vitamin C containing foods during storage and preparation, even though the reaction pathways in real systems are naturally far more complex. These experiments also lay the groundwork for a better understanding of the negative effects of vitamin C degradation in the body.
Explore further: Celebrating the centennial of a landmark in culinary chemistry
More information: Glomb, M. Maillard Degradation Pathways of Vitamin C, Angewandte Chemie International Edition: dx.doi.org/10.1002/anie.201300399
(PhysOrg.com) -- Agricultural Research Service (ARS) scientists have shown that increasing roast color intensity steadily ramps up the antioxidant capacities of peanuts, peanut flour and peanut skins.
Billions of people around the world today will unknowingly perform a chemical reaction first reported 100 years ago. And the centennial of the Maillard reaction—which gives delightful flavor to foods ranging from grilled ...
Anti-caking agents in powdered products may hasten degradation of vitamin C instead of doing what they are supposed to do: protect the nutrient from moisture.
A new commercial processing technology is suitable for boosting the vitamin D content of mushrooms and has no adverse effects on other nutrients in those tasty delicacies, the first study on the topic has concluded. The technology, ...
(Phys.org) —While the natural world is replete with compounds that form the basis of many disease-fighting pharmaceuticals, it is also the case that humans and other mammals produce their own host-defense ...
(Phys.org) —There's hope for patients with myotonic dystrophy. A new small molecule developed by researchers at the University of Illinois has been shown to break up the protein-RNA clusters that cause ...
(Phys.org) —A combined team of researchers from the U.S. and Slovenia has succeeded in creating "origami" type proteins that assemble themselves into three dimensional shapes. As a proof of concept, the ...
(Phys.org) —Changes in the bases that make up DNA act as markers, telling a cell which genes it should read and which it shouldn't. In the journal Angewandte Chemie, a British team has now introduced a new ...
Move the slider to adjust rank threshold, so that you can hide some of the comments.
Display comments: newest firstnot rated yet Apr 02, 2013 Ascorbic acid is synthesized by almost all mammals and birds in quite large amounts so the likelihood or their being adverse affects which have not already been tackled by the evolutionary process seems unlikely to me.1 / 5 (1) Apr 02, 2013the Maillard degradation of vitamin C in the body may be involved in clouding the lenses of the eyesIt would point to the risks of various anti-cancer cures based on high dosages of vitamin C. But IMO vitamin C is oxidized with free air or another oxidants way faster than with proteins/aminoacids with Maillard reaction. Such a reactions are indeed possible, but quite limited in their scope in real praxis. The fructose syrup is much more dangerous from this perspective, because it's consumed regularly and in large quantities. Because it contains glucose in free state, the Maillard reaction will gradually destroy all proteins in your body (diabetic foot, blindness, etc.).
You can check the speed of Maillard reaction with preparation of caramel during heating of condensed milk with corn sirup at the water bath - just under while the white solution will change into thick jelly. The same process proceeds in your body, when you consume sugar products based on corn syrup regularly.
1 / 5 (1) Apr 02, 2013 The sucrose and maltose don't exhibit Maillard reaction so rapidly, because the glucose (which is the main reducing component prone to Maillard reaction) is usually metabolized with organism faster, than it can be released with splitting of sucrose in livers. Of course, if you don't want to change your body into caramel gradually, it's always better to avoid free sugars in your food completely.
(Phys.org) —While the natural world is replete with compounds that form the basis of many disease-fighting pharmaceuticals, it is also the case that humans and other mammals produce their own host-defense ...
(Phys.org) —There's hope for patients with myotonic dystrophy. A new small molecule developed by researchers at the University of Illinois has been shown to break up the protein-RNA clusters that cause ...
From methanol to formaldehyde - this reaction is the starting point for the synthesis of many everyday plastics. Using catalysts made of gold particles, formaldehyde could be produced without the environmentally ...
Researchers have found that reusing the by-products of fruit and cereal processing could help promote the sustainability of the food industry, as long as its overall environmental fingerprint is clearly evaluated.
(Phys.org) —A combined team of researchers from the U.S. and Slovenia has succeeded in creating "origami" type proteins that assemble themselves into three dimensional shapes. As a proof of concept, the ...
Although eleventh-century Vikings did not have magnetic compasses at their disposal, it is thought that they could determine their orientation at sea using sun-compasses. Sun-compasses use the position of ...
The atoms that make up ordinary matter fall down, so do antimatter atoms fall up? Do they experience gravity the same way as ordinary atoms, or is there such a thing as antigravity?
Pick up your smartphone. How are financial markets faring? Check Dow Jones or the S&P 500. Average temperature in the United State last July 4th? Steer your iPad over to the National Weather Service. OK, ...
A quantum computer is controlled by the laws of quantum physics; it promises to perform complicated calculations, or search large amounts of data, at a speed that exceeds by far those that today's fastest supercomputers are ...
(Phys.org) —As planets age they become darker and cooler. Saturn however is much brighter than expected for a planet of its age - a question that has puzzled scientists since the late sixties. New research ...
© Phys.org™ 2003-2013var _comscore = _comscore || [];var csDocDomain = document.location.href; _comscore.push({ c1: "2", c2: "6035753", c3: "6035753", c4: csDocDomain }); (function() { var s = document.createElement("script"), el = document.getElementsByTagName("script")[0]; s.async = true; s.src = (document.location.protocol == "https:" ? "https://sb" : "http://b") + ".scorecardresearch.com/beacon.js"; el.parentNode.insertBefore(s, el);})();
No comments:
Post a Comment