Credit: Angewandte Chemie (Phys.org) —Changes in the bases that make up DNA act as markers, telling a cell which genes it should read and which it shouldn't. In the journal Angewandte Chemie, a British team has now introduced a new method that makes it possible to enrich the rare gene segments that contain the modified base hydroxymethylcytosine and to identify individual hydroxymethylcytosine molecules in DNA. Such modifications are associated with autoimmune diseases and cancer.
The bases adenine, guanine, cytosine, and thymine make up the genetic code. Every cell of the body contains an identical set of complete genetic material. However, the various tissues in the body are very different from each other. This is because the cells have the ability to transcribe only a specific selection of genes into proteins, leaving other genes unused. Epigenetic factors such as "markers" on the DNA control this process. The base cytosine can be equipped with different side groups, such as a methyl or hydroxymethyl group. Dense methylation of regulatory gene segments switches off the corresponding genes. During development of the embryo, methylation patterns initiate cell differentiation. Changes in the methylation patterns are associated with autoimmune diseases and cancer. Hydroxymethylcytosine patterns also seem to play a role in the differentiation of embryonic stem cells as well as in gene expression in cells of the central nervous system.
Sequencing techniques that can be used to specifically detect epigenetic bases are thus very important. To date, the identification of hydroxymethylcytosine has required complex, expensive, or error-prone processes. A team led by Hagan Bayley at the University of Oxford University has now developed a chemical modification that allows for the differentiation of hydroxymethylcytosine and methylcytosine through sequencing in nanopores.
Developed by Oxford Nanopore, a company formed by Hagan Bayley in 2005, the nanopore method is a highly promising alternative to the sequencing of individual DNA molecules without an amplification step. Fed by an enzyme, a single strand of DNA threads through a membrane-embedded protein pore. Depending on which of the bases is in the narrowest part of the pore at a given time, there is a characteristic change in the flow of current through the pore.
A chemical reaction between hydroxymethylcytosine, bisulfite, and a cysteine-containing peptide that leaves the other bases—including methylcytosine—unchanged, greatly improves the resolution as the various bases result in differences in current.
Importantly, it is possible to attach a fluorescent marker to the modified site, or a molecular "eye" that can be used to attach the rare hydroxymethylcytosine-containing DNA fragments to "hooks" that allow the fragments to be enriched over unmodified fragments, enabling rapid sequence analysis.
Explore further: Bioengineering team creates self-forming tetrahedron protein
More information: Bayley, H. Single-Molecule Detection of 5-Hydroxymethylcytosine in DNA through Chemical Modification and Nanopore Analysis, Angewandte Chemie International Edition. Permalink to the article: dx.doi.org/10.1002/anie.201300413
Last year, a research team at the University of North Carolina at Chapel Hill discovered one way the protein Tet 1 helps stem cells keep their pluripotency—the unique ability to become any cell type in the body. In two ...
In the currently hot research area known as ‘epigenetics’, researchers are discovering that offspring inherit much more from their parents than just their genes. Individuals also inherit detailed ...
For decades, scientists have known that DNA consists of four basic units -- adenine, guanine, thymine and cytosine. Those four bases have been taught in science textbooks and have formed the basis of the growing knowledge ...
In 2009, the DNA alphabet expanded. Scientists discovered that an extra letter or "sixth nucleotide" was surprisingly abundant in DNA from stem cells and brain cells.
(Phys.org) —While the natural world is replete with compounds that form the basis of many disease-fighting pharmaceuticals, it is also the case that humans and other mammals produce their own host-defense ...
(Phys.org) —There's hope for patients with myotonic dystrophy. A new small molecule developed by researchers at the University of Illinois has been shown to break up the protein-RNA clusters that cause ...
(Phys.org) —A combined team of researchers from the U.S. and Slovenia has succeeded in creating "origami" type proteins that assemble themselves into three dimensional shapes. As a proof of concept, the ...
Life on Earth may have originated not in warm tropical seas, but with weird tubes of ice—sometimes called "sea stalactites"—that grow downward into cold seawater near the Earth's poles, scientists are ...
(Phys.org) —While the natural world is replete with compounds that form the basis of many disease-fighting pharmaceuticals, it is also the case that humans and other mammals produce their own host-defense ...
(Phys.org) —There's hope for patients with myotonic dystrophy. A new small molecule developed by researchers at the University of Illinois has been shown to break up the protein-RNA clusters that cause ...
From methanol to formaldehyde - this reaction is the starting point for the synthesis of many everyday plastics. Using catalysts made of gold particles, formaldehyde could be produced without the environmentally ...
Researchers have found that reusing the by-products of fruit and cereal processing could help promote the sustainability of the food industry, as long as its overall environmental fingerprint is clearly evaluated.
(Phys.org) —A combined team of researchers from the U.S. and Slovenia has succeeded in creating "origami" type proteins that assemble themselves into three dimensional shapes. As a proof of concept, the ...
Although eleventh-century Vikings did not have magnetic compasses at their disposal, it is thought that they could determine their orientation at sea using sun-compasses. Sun-compasses use the position of ...
The atoms that make up ordinary matter fall down, so do antimatter atoms fall up? Do they experience gravity the same way as ordinary atoms, or is there such a thing as antigravity?
(HealthDay)—A new study failed to find any evidence to back up a suggested association between Lyme disease and autism spectrum disorders.
Pick up your smartphone. How are financial markets faring? Check Dow Jones or the S&P 500. Average temperature in the United State last July 4th? Steer your iPad over to the National Weather Service. OK, ...
A quantum computer is controlled by the laws of quantum physics; it promises to perform complicated calculations, or search large amounts of data, at a speed that exceeds by far those that today's fastest supercomputers are ...
© Phys.org™ 2003-2013var _comscore = _comscore || [];var csDocDomain = document.location.href; _comscore.push({ c1: "2", c2: "6035753", c3: "6035753", c4: csDocDomain }); (function() { var s = document.createElement("script"), el = document.getElementsByTagName("script")[0]; s.async = true; s.src = (document.location.protocol == "https:" ? "https://sb" : "http://b") + ".scorecardresearch.com/beacon.js"; el.parentNode.insertBefore(s, el);})();
No comments:
Post a Comment